INTERSTATE COMMERCE COMMISSION

REPORT OF THE CHIEF OF THE DIVISION OF SAFETY COVERING THE INVESTIGATION OF AN ACCIDENT WHICH OCCURRED ON THE NEW YORK, NEM HAVEN \& HARTFORD RAILROAD NEAR MILFORD, CONN., FEBRUARY 22, 1916.

March 14, 1916.

To the Commission:

On February 22, 1916, there was a rear-end collision between two passenger trains, also involving a freigit train on an adjoining track, on the New York, New Haven \& Hartford Railroad near Milford, Conn., wilcin resulted in the deati of 3 passengers, 3 employees on duty, 2 employees off duty, 1 Pullman employee, i person riding on the engine without autinority, and injury to 235 passengers, 9 employees on duty, 15 employees off auty, 4 Pullman employees and 3 persons carried under contract. A public hearing was neld in New Haven, Conn., on February 24-25, 1916, and the Public Utilities Commission of the State of Connecticut, winich was then engageat in an investigation on its own initiative, was invited to and did participate in this nearing. As a result of the investigation of this accident I beg to submit the following report:

The accident ocourred on the Now York Division of the New York, New Haven \& Hertford Failroad at a point about 2 miles east of Milford, Conn. The line at this point is fourtracked and the general direction is east and west. The tracks numbered from north to south are 3, 1, 2 and 4 , tracks 3 and 1 being used by westbound trains, wille tracks 2 and 4 are used by eastbound trains. The movement of trains is governod by time table and an automatic block signal system. Trains on this Division may be propelled by steam or electric locomotives, current for the latter being supplied from wires suspended over each track from catenary bridges located 300 feet apart and extending across $2 l l$ four tracks.

Beginning at Sicnal Tower 73, located about 6 miles west of New Haven and proceeding westward, the track is tangent for 4,521 feet, and following is a 50 -minute curve to the $r 1$ gint 686 feet in lengtin; the track is then tangent for 2,600 reet. Located 640 feet west of tower 73 is automatic signal 65.93, on bridge 960, and 4,814 feet farther west is automatic

signal 65.23 on bridge 944.
All four tracks are autometically signalled between New Haven and stamford and those in the viointty of the cocident were put in service on June 3, 1914. The lengtin of blocks is not unfform, but signal looations were establisined to provide proper spacing of traine, giving proper consideration to gredes, visibility, curvature and interlocking plants. The average length of blocks 1 g about one mile.

Tae signele are suspended from the catenary bridges winich support the electric propulaion power wires, being nung to the rigint oi the track they govern. Escin signal hes two arms-a home and a distant, - the nome being above the dictant arm. The end of the home arm is pointed and that of the distant armis "fish-tailed," the former being red and the latter yellow. The inalcation for each automatic signal is a red ligit over yellow, or botin arms horizontal for stop; green over yellow or top arm inclined with lower arm horizontel, prepare to stop at next slgnel; both lignta green and boti arms inclined, proceed.

Power for the eignal system is fumisnod from separate generators in Cos Cob power nouse and is traksmitted on independent feeders at 2300 volts, single pinse, 60 oyēes. Step-dow transformers are provided to reduce the voltage to 110 volts for signal operation. Additional transformers further reduce this to 12 volts for signal lignting, and to tine necessary voltage for track circuits. A current of 60 oycles is used for signal operetion, as the propulsion current is 25-cycle.

The signals are of the General Railway Signal Company'e B-A type, witin A. C. induction motors. mere is a separete mechanisr on the deck of the bridge for eacn nome and distant arm, and up-and-down rods inside of the supporting pipe connect the mechenisms with the spindle upon wion the arm is mounted.

The trach cirouits are not usually over 4,000 feet long, and in many caces they are shorter. Between signals 65.93 and 65.23 , winch were concerned In the accident, thore are two track sections, each 2,400 feet long. The curront supplied througn the transformerg to the track droutt varies in voltage and quantity according to the lengtin of each track section, as well as other physical conditions. Inpedance bonds ere installed at the end of eaci section, whicn offer a minimum resistance to the $25-c y c l e$ propulaion current but cineck the 60-cycle signel current.

The track circuit relays are of the centrifugal frequency type. The main operating part of these relays consist of a small induction motor, so designed that it will only revolve at full speed when 60 -cycle current is provided. The relays are "two element," that is, 110 volts from the line transformer is constantly supplied to the stator, or field coils, and the rotor receives current from the track circuit. The relay motor will not operate at full speed unless botin these currents arc of the same phase and frequency. Whon the track is unoccupied tine relay motor is continuously in operation.

The contacts are made by governor balls winich fly out when the motor is operating at full speed and close the contects through a proper systom of levers. Ccunterweigits open the contacts when the speed of the motor is reduced. Even should some of the propulsion current enter the relay after a train has paesed, the 25 cycles would not operate $1 t$ at sufficient speed to close the contacts.

Tise distant arms are controlled by lino circuits from the signal in advance, uging a three-position galvanometer relay. The line circuits are not out through the track relays at intermediate treck sections. These circuite are so designed that crosses will ceuse signels to assume the stop position. Signal control wires are cerried in cables suported from the catenary bridges.

The trains involved in this collision were regular westbound passenger trains No. 79 and No. 5 running on track No. 3 , and an extra freigit train neuled by locomotive No. 1003, running westward on track No. 1.

Train No. 79, known as the "Connecticut River Special," running from Brattleboro, Vt., to New York, N. Y., was dram by steam locomotive 1346, and was in charge of Conductor Bray and Engineman Kennedy. It consiated of the following cars in the order named:

This train left New Hoven on treck 3 at 11.08 a.m., 29 minutes late, and passed tower 73, the lest reporting station, at 11.19 a.m., and was brought to a stop about 11.21 a.m. With the rear
end about 450 feet west of signal 65.23 by the brakes going into emergency, caused by the air ascaping from a cut in the air hose on the forward end of the baggage cor. The train wes standing in tinis position when it was struck by train No.

Trair No. 5, a local passenger trein, en route from Boston to New York, wes drom by steam locomotive 824 and was in charge of Conductor Brant and Engineman Curtis. It consisted of the following cars in the order named:

This train left New Haven on track 1 at 11.10 a.m., 21 minutes late; at tower 75 just west of Now Heven station it Wns crossed onto track 3, passed Tower 73 at 11.22 a.m., pessed automatic signol 65.93 in the caution nosition, struck the flegmen of train No. 79, poseca autometic signal 65.23 in the stop position, and wilie running at a specd estimated to have been betweon 40 and 45 miles per hour, collided with train No. 79 at about 11.24 am .

Freight extra 1003, consisting of 3 loaded end 35 empty cors, in chergo of Conductor o'Brien and Encinoman Spaulding, left Now Haven on track No. 1 at 10.56 a.m., passed tower 73 at 11.21 a.m., and at the time of the collision, locomotive 1003 wos noaris opposite the locomotive of train No. 79.

The collision raised the rear end of the lest car of train No. 79, the end sill striking tie cylinders and sodale of locomotive 324, tearing the boiler shell completely loose from the frame, the sincli continuing into the body of the car about 20 feet. Illustration No. 1 shows the condition of this car aiter it ned been picked up and moved to the snop. Inlustration No. 2 shove the front end casting of engine 824 in the interior of the car.
(Ilustrations Nos. 1 and 2 omitted)
The force of the impact lifted the steel car fron its trucks and the car, togother with the boller shell, was forced upward and towerd the south ageinst a ateel gondola car in tife passing freight train, orowding it gouthward off the track. The forward movement of the freigint train carried the steel coach
westward about 40 or 50 feet winere it ceme to rest upon its side, completely blocking tracks 1,2 and 4, The snell of the boiler continued on across track 4 and came to rest on its side at the foot of the embankment witn its formard end even with tine rear of the steel coan. After tine accident the front sheet of the boiler was found to contain a puncture from 6 to 8 inches square, in the lower left hand corner slightly below the center or the fire box door. Tais puncture was evidently caused by some object being forcod uptard and backward through the fire box. The running gear of locomotive 824 wes derailed, but remained upon tine roodbed. The two rear cars in train No. 79 were derailed. The vestibule on the east end of Pullman car Napoleon was sligntly crusned in on the left side. The floor and end sill on the west end wore bent sliginty upward. The roof on the west end of tine car on the rigit side was sligntly damaged, caused by its coming in contect with one of tine catenary posts placed upon the right side of the track, wifin ineld the car in a partyy overturned position and prevented it from rolling dow the embankment. Pullman car Wrentinan ind its vestibule on the west end crusied in on eacin aide and end sills bent slightly upward. Coacin 7855 ned its vestibule on its east end completely crusned in up to the body of the car and its seats sligintly disarranced. The aills of the cai romained intact. Illustration No. 3 snows the rear of this cri before pullman car Wrentian had been separated from it. Bageage car 5340, the nead car of train No. 5, was telescoped a distance of about 5 feet by the tender of locomotive 824; the end silis, nowever, remained intact. Illustretion No. 4 snows the form ward end of this oar after it had been taken to the shop. The front truck of this car was the only part of the train of No. 5 tnet was derailed.
(Illustrations Nos. 3 and 4 omitted)
When train No. 79 ceme to a stop its rear end was 450 feet mest of signal 65.23. Tins signal could be seen by the engineman of an approaching train a distance of approximately l, 800 feet, by looting across the curve and through the cetenary bridges. Autometic signal 65.93, the distant signal for signal 65.23, is on a tongent and con be olainly seen by the engineman of an approsching train. On account of the curve between these signals, signal 65.23 connot be seen from signel 65.93. The grede for a distance of one mile or more ecst of the point of acoident is sligntly descending for we stbounci troins, and at no point is greater tian one-inalf of one per cent. The weather at the time of the accicent was clear, and the sun wes sinining.

After the accident both automatic signals 65.93 and 65.23 were found to be in tife stop position, being neld so by the
cars of the trains involved occupying the blocks. The body of Flagmen Tourtelotte, of train No. 79, was found on the side of the bank to the north of track 3 . His fusee and torpedoes were found near the north rail of track 3 , at a point approximately 750 feet from the rear of ins train. He had been struck by the engine of train No. 5.

Engineman Kennedy, of train No. 79, stated tinat after leaving New Haven, ins train attained a speed of 45 or 50 miles per hour and that all of the signels witch ne passed wore in the clear position; shortly after passing tower 73, the brakes went into the emergency; he got off and found the atr escaping from a hole in the air hose on the nead end of the baggage car and the steam neat. hose between the tender and begege car uncoupled; he wes under the end of the baggage car replecing the air hose when the collision occurrea and estimates that his train was pushed forward about a car lengtin by the force of the collision: He stated that when his train stopped, he did not signal his flagman to go back with a flag, knowing the delay would be of short duration and having in mind the reliability of the fiagman, and feeling thet he would not wait for a signal before going back. His train stopped at 11.21 and he estimates it nad been standing ebout 3 minutes when the accident occurred. Ingineman Kennedy also stated it wes his understonding that wian a aistant signal is found in the caution position thet the specd of the train must be reduced imnediately and not again accelerated until the track is indicated to be clear by the next signal.

Fireman Kantz stated that just before the train came to a. stop he hid put 3 or 4 scoops of coal into the fire box and ned noticed the smoke througri trie onginemen's window trailing along the side of the train. When the train stopped he went to the rear of the tender and was essisting Enginemen Kennedy in roplacing tre air nose when the collision occurred.

Ticket Collector Russell, of train No. 79, stated thet at the time nis train stoppea he was riding in tine baggege compertment of the nead car and about a minute after the train came to a stop he opened the baggage car door and looking backward saw the flagman going back with a flag.

Brakeman Tucker, of train No. 79, stated that when his trein ceme to a stop ne nad just finisined counting the passongers in the last car; he immediately locked out on the left sice of the train and saw the engineman near the rear of the tender and upon looking backward sat that the flagman nad started beck with a flag in ifis hand. He then went forward to essist in replacing the hose and wes at the nead enc of the train when the collision occurred at 11.24 a. m. He also stated that the wind was not very strong in any particular
direction and in ins opinion there was not sufficient snoke or steam to obscure the signals from the view of the engineman of an approaching train.

Engineman Spaulding, of extra 1003, stated that after leaving New Haven his train was running at a speed of 25 or 30 miles per hour. As he approached the curve just east of the point of the accident he looked across the curve and saw a nome signal on bridge 944 in the stop position but at that time he was unable to say winich track tre signal governed; nowever, as his train came closer he saw that 1t was signal 65.23 which governed track 3 and that signal 65.21, governine the track on which his train was running was in the clear position. Ho stated that as nis train came around onto the tengent he discovered the rear end of train No. 79 and the flagman almost simultaneously. At tinat time the flagman was going back at a fast walk and had reached a point about 10 or 12 car lengtins from the rear of train No. 79. As he epproached the rear of train No. 79 he sounded the whistle of the locomotive to warn persons standing on the track and closed his throttle and when his locomotive had reached a point sbout 2 or' 3 car longths from the locomotive of train No. 79, he noticed that train surge formard and saw one of the employees that was standing at the rear of 79 's engine, thrown across the track in front of his locomotive. He immediatel.y mede an emorgency application of the brakes and at the seme moment felt the effect of the collision on his trein. His locomotive came to a stop 5 or 5 cer lengtins west of the locomotive of train No. 79. Engineman Spauling further steted thet acoording to inis underetending of the rule goveming distant signels, when the signal is found in the caution position, enginemen are not nocessarily required to reduce speed, but must epproach the next home signal prepered to stop if it is found to be in the stop position. Considering tine speed of the train and the distence between the signals at this particuler location, in inis opinion, when signal 65.93 was found in the caution position, on enginemen sinould have shut off steam when passing the distent signal in order to be able to stop at the next home signal. Engineman Speulding also stated that when he first saw signal 65.23 in the stop position, there still remeined a sufficient distence in wincin to bring his train to a stop nad it governed the track on which he wes murning.

Firemen Kipput, of extra 1003, stated that approacing the point of the acoldent, he was engaged in putting coal into the fire box. He heerd inis engineman sound the whistle whereupon he went to the gangway and looked out, then returned to his firing and had just completed putting the coel in the fire boy when the crasn came. Firener Kipput stated that the wino sppered to be from the north and in his opinion the smoke
and steam from inse engine was not sufficient to obscure the signale on track 3 .

Roed Foreman of Engines Reichel stated that in his opintion an onginemen finding signal 65.93 in the caution position snould enut off at once as at that point a train will run sufficiently fest after the steam is snut off and the brakes applied to stop at the next nome signal. He stred the t ho does not think under the worst conditions tine smoke and steam at this point would be sufficient to prevent an engineman from observing the signal before passing it.

Conductor Brant, of train No. 5, stated that leaving New Eaven nis train ran at a reduced rate of speed tirough tic cut, a distance of about $3 / 4$ of a mile, after wich the speed was accelorated until it reached 35 or 40 miles per hcur, which speed remained practically uniform until the time of the collision. Conductor Brant stated that approaching the point of the accident ne was riding in the baggage car and the first intimetion of the impending accident thet he received wos the emergency application of the brakes followed almost immediately by the shock of the collision. Conductor Brant furtiner statod that after the accicient the body of Flagman Tourtelotte wes found about two car lengtis east of the rear of inis train.

Baggageman Gandrup ana Erakemen Snort, of train No. 5, stated that ofter leaving New Heven yards they noticed no reduction in the speod of their train until they felt the emergency application of the brakes immediately before the collision occurred.

Ticket Collector Convell, of train No. 5, stated tinat aiter lecving New fieven, he noticed a slight applicetion of brekes; ne is of the opinion that this application was made between West Haven and Wondmont, and at that time made a mental comment thet they nod cought up with train No. 79. He stated that ne did not notice any application of the air brakes immediately prior to the collision.

Section Forman Heath stated thet siortiy before the accident he was working on trock lio. 4 at a point about 600 feet west of tover 73; as No. 5 approsched he looked directly et signal 65.93, being only about 100 feet distent, and at thet time the top arm wes in the clear position, and the botton arm in the horizontal or ceution position. As far as ne could see, no reduction was made in the speed of train No. 5, either before or after it paseod tine signal. Immedintely efter the passage of the train inegain looked at the signal and both erris were in the inorizontel position. As the locomotive of the train went by, he noticed the engineman on the
rignt aide and the firemon and anotier man on the loft side of the engine, the fireman saluting inim as they passed. He estimotes the speed of the train et thot time to nave been 45 or 50 miles per hour. Snortly arter the train passed he neard the oresn and thinking tiet on acoident nad ocourred, ne hurried to the scene. Section Foremen Heatn also stated that it 1 s a firequent and an everyday ocurrenoe for passenger trajne to pass a yellow boerd at a nign rate of speed. In inis observations ne ned noticed that some enginemen were more cautious then otnors.

Signal Engineer Morrison stated that it is the standerd practice of the New Hoven road to install signals at least oreking distance from each otner, but not less tinan 4,200 feet apart; tinat under the rules an enginoman receiving a caution signal, under the syctem in operation in tinis territory, is not necesecrily required to reduce speed at once, but may proceed prepored to stop at tho next gignal in advence. He steted tiat in tio operation of troine Nos. 79 and 5 on the day of the acoident trie physical conditions were such that theoretically, if each train asd mantained tine same relative speod aftor leaving New haven, train Tr. 5 would have recelved but one distant aignal in the clear position between New heven and the point of the acoident.

In discussing the operation of the signals betreen Now Heven and stanford, a distence of ebout 40 miles, Mr. Morrison stoted that there were 84 signols in service; fron the doy they rere put in operetion, to the dey of tre scoident, based on an average aey's business, there nad been approximetely ?, 132,860 eignal operations. During this pertod there had been reported 250 instancos in wion aignals had displayed the stop or caution indication when the clear indication siould neve been siom, or one safe failure for eaci 28,000 movenents, waich is 99.39 per cent perfect periomance. During this same pendod, eignt instonces nod been reported in winich the signala nad improperly displayed proceed, or one improper indication for each 691,607 movenents, whion $1 s 99.399$ per cent perfect performance. Below are sinow the causes of the improper proceed indicatione and the dates on mind tioy ocourred:

July 7, 1914. Motor derect; nole in contact of centrifugal governor bacly wom, oaucing friction which caused signal to ramain in proceed position then it snould neve gone to stop by cravity.

Algust 1, 1914.
Motor trouble: Armature shaft of motor out of line, ceusing pinion geer to stick.

Jonuary 8, 1915. Defective rolay: Gumm substance formed, causing ameture to fail to arop ewoy from contact points. Gumy substance evidently got in तuring manufacture.

Januery 26; 1915. Ice on sinft bearing: Weter eradually ran down from simal and collected around back of sinaft bearine, froze until it nela signal falsely in the clear position.

February 19, 1915. Motor stickine: In assembline motor an additional washer ned been put on motor gnaft winch dia not give armature proper end play, causing it to bind.

Junc 24, 1915.
Obstruction in teeth of cear wneel: Teetin on motor pirion badiy cinipped and particies of castine got in betwoen teetin of gear weels causing it to bink.

October 12, 1915. Stripped eecr: Gears on sector gear stringed, resultine fron defective castine.

Jonvery 8, 1916.
Fole changer out of adjustraent: Shortening of rod due to change of temprature, prevented circuit controller or pole chaneer in mechanism fron movine far enougn to retain contact insteaf of breaking it.

Mr. Morrison stated thot all of these improper proceed indications wore csucen by mocianicel failures and were not foiluros of an intermittent character, but in each instance trie sienal continued to aisplay the improper indication until repolred. He also stated thet in each and every instance in winion an improper aignal indication rad been reported, the motter hed been investigated and its cause detemined. Mr. Mormson further stated that a single cross or ground on any of the signal circuits would cause the sienal to go to dencer, anc tinat the relays are so constructed that in tine event of the 25 -cycle current, used for propulsion, entering the signal circults it would be absolutely impossible for it to cause the signals to display an improper indication.

In conriction with the investieation of automatic train control devices made by the New York, New Heven and Hartford

Railroad, Mr. Morrison stated thet over 4,000 plane or devices had been subnitted to him for consideration, but of those gubmittea only two devices had any merit whetever. Later on ingtellation of these two devices wes mase for the purpose of testing their efficiency. The first evice tested, after a short triel, proved an abolute failure. The second device aes been the subject of experiment for about a year, but has given nore or less trouble and does not meet all of the requirenerte, and up to cate has not reached a satiafectory stege of developnent. Mr. Murrison stated that durine the tests of these two devices, in two instences a train was not stopped wen it should have been, and for these failures the rmufncturers were unoble to account.

Goneral hmager Errdo steted that the third nen wo was riaine on the locomotive of train No. 5 and was killed in the accident had been identified as a fomer employee by the rane of Sweeney, An investication made by nim aisclosed that Sweeney had entcred the service or the railroad company as a laborer et the round Zouse in Stemford on Jonury 1.7, 1916; ne reported for duty at 6.00 a.m. on the momins of Februery 22e, cne left the service of the company at 8.15 on the same day, after wich no went to $h 1 s$ hone and told nis mother that ne was zoing to look for a better job. Mr. Berdo stated that nis presence on the locomotive was unathorized and cennot be accounted for. Mr. Burdo also atated that Engineman Curtis was fully qualified to operate any kind of a train on the rocd and that he had been on this particular run since Decenber. H. hee known Esinoman Curtis personelly for 11 or 12 years; Por 2 or 3 years Curtis oame under his observation prectically every day, and he had every reeson to feel ane believe that he was a thoroughy competent ongineman. He inad obscrved Flagman Tourtelote a number of times wilile ricinc on his train and inis whole makeup and menner of doing business impressed him astint of a very careful ran.

In connection with the edvisability of a rule winich would require engincmen to siut off steam and begin to reduce speed at a caution signel, Mr. Errdo stated that ine is in doubt as to whetiner such a rule would ded any fator of safety to train oporation, but was not in doubt as to the wiscom of doing anyting wion would keep conetantly before the mind of the encinenar the importance of the distent signal and if there is enything further in thet wey that his company oan do, that tiey have not already done, they will be glae to do it. Fe stated that regardire the congestion whon mignt result from the operation of guch a rule, there is no anxiety so far as the officers of the reilroad are concerned, and there should be none as far as the men employed in train sorvice are concerned regarding the question of time. The question of time has been suborinated just as far as it is possible to do so
where tie question of safety is in the least involved, and this has been impressed upon tine employees in every direction. He does not belleve that as a matter of everyday practice the application of such a rule would be felt one way or the other under a properly arranged automatic signal system; however, in territories where tie signals are two or three miles apart, it would stand to reason that a man could hardly be expected to follow tine same rule of shutting off at a distant signal. Such a rule must be susceptible to the same juagment and to the same consideration of the conditions as any otner rulo.

In conncetion with the observarice of distant signals, Mr. Bardo further steted thet in years gone by it probably was: true that in the anxicty to maintain schedule time and keep trains moving, more attention had been paid to the home signal and its indications than had been paid to the caution signal and its indication, both in the manner of instructing tne men and in the tests that have been made, but in the last three years this nad not been so, because the importence of tine distant signal hed been emphagized just as strongly and vigorously as it could be, and with the knowlodge that an encincuan observes the distant signal, the officiols have every reason to believe that ine 1 e going to observe the nome signal.

General Menager Bardo steted that during tie two years ending December 31, 1915, a total of 40,306 efficioncy tests as to the observance of rules and reguiations had been made by the officials of the company. These teats were subdivided. into 35 different classificetions and included the following: Home semaphore signel at stop, 4,611 tests; train order signal at etop, 1,564 tests; automatic signal showing stop, 2,440 tests; distant signol at ceution, 2,410 tests; slow signel, yellow flag or lantern, or yellow fusee placed on track, 9,618 tests. All of the tests enumereted above resulted in a perfect performance, with one exception. In one instance, in a test of automatic signale at stop, an engineman did not come to a full stop, but reduced apeed to about 4 miles per hour.

General Manager Bardo submitted a statement covering a period of 28 months from September 1, 1313 to December 31, 1915, anowing tinet during that period, there were 56 instances reported in which enginemen nad disregarded signals. Tints shows a marked reduction as compered with 153 sucn instances showr in a similer statement furnigned in connection with the accident at Nortin Haven, Conn. for a period of 32 months ending Soptember 1, 1913.

In reply to a question as to what ne would suggest as a preventive for scoidente of this character, Mr. Bardo answered as follows:
"Tnct is an exceedingly difficult question, because of the fact thet regardees of what mechanically or electrically combinod devices may be cevoloped, you still go back to the human element and there is a very grave question in my mind ns to the risdom of taking from the shoulders of a well-trained, well-disciplinod engincer the responsibility for doing certain things, and placing it. upon a men who, by tine very nature of things, cen't be either so welltrainod or so well-disciplined. In other words, you simply trensfer the responsibility from the shoulders of onemen to anotiner, or you do a more harmful thing, you divide it between two men. Our experience, and I think the exporience of every railroed and of every institution where mechanical appliances are used, is that mecnanicel applianoes will fail, and whon they fail you never can be quite sure in wint on direction thet foilure is going to go, because while it is planed ond innerently set up that tinc failure must be in the intereste of enfety, the failures to which we refer in what has often been heralded as the rext step in eafe rallrost operation, namely, the automatic train stop, is not a safe fallure. It becomes at once a argerous fallure, because that texes away from the engineer the use of his intellagence and his training and nis knowledge in the control and the hending of the air brokes in his train. It is woll enough to soy that, under the principle that the application of the brakes on a bie long freignt train is gcing to stop, but those of us who have gone through the mill appreciate that the spplication of the brakes upon a long Ireight train is sometning that must be nanded with a great deal of intelligence, and I doubt if we will ever findi a cievice which is going to absolutely supplant the intelligence of the engineer in tiat arection. We are just as anxious as anybody to finc some way in which we can reduce the tazerc of railroed operation."

An cxaninttion of the air hose removed from the head end of the beggage car of train No. Yo, winch coused the train to come to a stop, disclosed an opening about onenalf the circumference of the nose ebout one inci from its upper end. This opening bore evidence of heving been struck a severe blow by some heary object winich cut through the hose and sheored a piece of the metal from the ond of the nipple. Just below the cut the nose bore on obresion from one to two inches in jengtin,
inciceting that it nad recelved a glancing blow witr the nose ecrewed into an engle cock, in its nomal position, the cut was on the top of the nose.

Ger Inspector Connellan stated tiat on tine morning of the cocicent he couplec engine 1346 to train No. 79 et New Haven and at thet time the air hose on the need end of the baggege ocr was apparentiy in good condition.

Goneral Air Brake Inspector Joy stated that the condition of the air hose taken from the nocd end of the baggege car on train No. 79 Indicetes that it inad been nit by some nard object on its upper end, outting tinrougn the nose end bettering the end of the nipple inside. In nis opinion tais could neve been ceused by the steam nose between the tonder and baggage car becoming uncoupled, the nead of the stean nose striking the track anc being tinrom upward against the air inose.

General Cor Inspector Sheenan and Mechanioal Superintencent Wildin made an examination of the nose, and oach stated that In nis opinion the nose had not burst, but nad been out by some object. An ingpection of similar equipment aisclosed that if tine steam roce were to become aisconnected between the tender ane the nead cer, it would be possible for elther the steam -iose on the rear of the tender or on the noad end of the bageage car to come into contect with tine ties and tnue be trrown up ond strike the eir hose in a menner so as to make a cut sinilar to the one appeading on the nose under investigation.

Train No. 79 had been standing approximately three minutes and the flagmon had succeeded in getting back a distance of 750 foet winen ne tres struck and killed by train No. 5. Subsequent to the acoident, a teet was made in an effort to escertain the distence thet a flegnen would be able to get beck during the interval betreen tine time train No. 79 stopped end the time of the collision and it was found tinat at a fast walk etarting on the ground where the rear end of train No. 79 stood, a person in two minutes would reach a point winere the evidence indicates Flagman Tourtelotte to have been struck by the loconotive of train No. 5.

It will be notes from Signal Ergineer Morrison's testimony tinct there were 258 signal failures between New Heven anc Stamford fron June 3, 1914, to February 22, 1916. There are 168 signal mecnanisme in this territory, witi a corresponding number of relays, electric locks, indicators, etc. Eased on the average dally train movement, tinere have been $7,132,860$ signal novemente. This gives one fallure for eacn 27,600 signel movements. of the 258 failures, eigint were "improper," or "folse clear" indicetions, an aversge of one for each 891,600 signal movenents. All of these fallures were of a mechanical
nature, and none of them were auc to electrical couses. The ceuses, therefore, were not obscure and were not of an intermittent nature. All of then would ineve continued to cause failures until remedied. Tinis is believed to be as favorable a. performance as tie recorde of most signal systens will show.

On February 26 tin, an inspection and test was made of the apparatus at signal locations 65.23 and 65.93 . The usuni tests of sinunting the treck circuite were mache, and the mechenisue were found to operate perfectly, boti for the stop and for tie caution arms. Tho operation of the centrifugal releys at botin signols, and the line relays at signal 65.93, was carefully observed. The nechenisme for aignal. 65.93 , on top of bridge 960 , were also inspected. None of the conditions causing any of the "false clear" feilures mentioned by Mr. Morrison, wore found to exist in the apparatus examinod. Since the accicent, watchan had boen on duty at both of these signal bridges and the boxes hos not been opened. The track relay for track 3, at signal Locetion 65.23, was removed and taken to the railway compenyts oignal gnops at New Haven, and tinere tested.

These observations and tosts confim tine testimony tinat the signale were rorking properly before, at tie time of, and after tine accident, and tio eyetem of inspection mat maintenance of the apparetus is sood.

The direct cause of this acelient was the feflure of Enginenen Gurtis of trein No. 5 properly to observe and be governed by the signal indications of automatic bloci signals 65.93 and 65.23 , whon are intended to prevent accidents of this character.

All of those wose testinony would throw any lignt on the reason why the signals wore not observed and obeyed, met deatr in tine accicent, and eny explanation that might be offered would simply be one of consecture.

Engineman Curtis was a conpetent ond truated enginomen. He was 42 years of cee. He enterec the service as fireman June 18, 1902, and was promoted to engineer January 29, 1907. He wes reduceé April 30 , 1908 , on account of depression in business and again promoted October 13, 1910. He passed a writton examination on operating rules Marcin 16, 1915, and has a clear service record. At the time of the acoibent he had been on duty about 5 hours and o minutes, following an off-auty poriod of 11 noure 26 minutes.

Flegmen Tourtolotte, of train 10.79 , wes an experienced and trusted employee. He was 54 years of age and entered the servjce as geteman in April, 1900. He was promoted to passenger
trainman in June of the same year. He passed a written examination on train rules on June 15, 1915, and inis service record is periect.

In the investigation of the rear-end collision on this rallroad at Stanford, Conn., June 12, 1913, it was developed tinat the two trains involved in that accident, left New Faven four minutes apart and in the investigation of the rear-end collision wifich occurred at North Haven, Conn., September 2, 1913, it was developed that six passenger trains passed Wallingford, the last reporting station prior to the place of accident, in 31 minutes ana were permitted to close up within a aistanco of approximately ten miles. In this instance, the two treins involved left Now Haven two minutes apart.

Train movements on this division are protected by automatic block signals, the vigilance of the engine crews and the alertness of the flagman. In each of these accidents, the following train ran by the signels aet in the stop position. In view of these disssters, it does not appear that passenger trains in througn gervico witi but few if any stops to meke, should be permittod to run so close togetiner, if dopendenco for protection is to be pleced upon the flegman. Protection by flagman is ineffective if cufficient time is not availeble fior the flegman to get a proper distance from the rear of his train to affora opportunity properly to perform his duty.

It is true tiat on meny railrosds, particularly in suburban traffic, treins are run with apperent sefety vory close togetner, but these trains are not run at suon nigh speed, stops are frequent, signels ere much closer and trains are comparatively ligit.

If, lenving Now Haven, these traina ned been spaced fartner apart, and each had maintained the sone relative rato of epeed, tine flagmon of trair No. 79 could probably have gotten back far enough to have warned the engineman of train No. 5, had that enginemer seen nim, or at least to have placed torpedoes on the rail that would heve been sufficient warning, so that some one on the locomotive could have brought the train to a stop end thus heve avertad tic collision.

Train No. 79 is en expross train end mekes no schedule stops between New. Faven and New York, and its average schodule speed is 43 miles per hour between Now Haven and Woodlam, the entrance to Grand Gentral Terminol Division. Train No. S is scheduled to leeve New Heven 10 minutes benind No. 79 , and is a local train making frequent stops including one at kilford, one mile west of the point of acoident, and its average speed
is less than 36 miles per hour. Therefore, under nomed. operating conditions tie neadway between these two trains is sufficient to permit a flagman to get back a proper distance In case of an emergency stop even though there were no gignel protection. There appears to be no reason why this prectice should not nave heen followed on the day of the accident. Zven with the trains leaving New Haven ten minutes apart, if the leading train should fail to make its schedule time, the traine would gredually close up and the only knowledge that the following train would receive that it was overtaking the preceding train, would be the signel jndication. For this reason it is imperetive thet a train should imediately slow down upon receiving the first caution signal and be governed in like monner thereafter by each succeeding caution aignal.

Figure N. . 5 is a diagran indicating the operoting conattions leosing up th and existing at the time of the accident. The interlocking stations and the differont automatic signals on track 3 are laid out to scale along the horizontal line, and time is represented on the vertical line. The records sinow but three times ior each train, that leaving New Haven, passing Tower 75, and passing Tower 73. As there was no marked slowing-dom or either trair after leaving the Now Haven yards, uniform speed is assumed between towers 75 and 73 , wion makes the time diacram for each train a straight line. The norizontal lines on the diagram, drawn from the intergections of train No. 5 's time line with the vertical Ines from ach signal to an intercection with the time line of train Nr. 79 , indicate where the latter train was at that particular instant. In order for train No. 5 to nave received a clear indication From each distant elgnal, train No. 78 must heve passed out of the second block in advance. The dotted horizontel lines show, except when train No. 5 tas approaching signals 71.23 and 70.33, that train No. 79 was actually in the second block in advance when train No. 5 passed the second signal in the rear, where a caution indication would have been given.

The evidence seems to justify the conclusion, as is indicated on the diagram, that train No. 5 had been passing without decreasing speed, most of the distant. signals at caution since leaving Tower 75. Wren the signol at location 65.93 was approacned and, ir observed, it was found that the distant arm indicated cation, on the same assumption, the engineman of train No. 5 would still consider that train No. 79 ros continuing at the same speed, and that the next signal, No. 65.23 , would show nothing more restrictive than caution. If, on approconing sigral 65.23, something for a very brief interval took the engineman's attention from the track anead, the stop indication would not be perceived until too late to stop.

The record in this case, together with a careful consideration of the diagram, brings forcibly to mind that the rules permit the distant signal indication to be observed with less exactness than is the nome signal indicetion. Distant signal indications are as positive as home signal indications. Under the preaent practice of the Now Heven R"ilroad, the distant signel at coution indicates to the engineman that he sinould prepare to stop at the next stgnal. This is practically the same as the standerd code of the American Reilway Ageociation for three-position signaling. This is not as definite and clear-cut a rule as thet given for the indication for the home gignal, winich says "stop," leaving in the latter case nothing to tice discretion of the engineman. Without such a positive rule, especially with men feeling the pressure to nake time, tinere is a great chance for error in reading, or for looseriess in observence of, the dastance signal. To be consistent with other signal rules winich require a positive definite action on the part of the enginemen, in order to provide proper sefety in the operation of its trains, existing rules sinould be so modified that at the distant signal in the caution position a train shall be brought under control as quickly as possible by the ongineman and maintained in such a state until the indication of the next succeeding signal is accepted. Suca an observance of the caution indication would not men delay et every distant signal, but with proper signal locations, after tie second train hed slowed down for the first caution signal encountered, it should reccive clear signels thereafter, unless it were overtaking the preceding trein. Such a practice may oconsion sligint delays in autometio signal territory with long blocks; nevertheless, speed must alweys be subordinate to safc operation.

Tis accident eqain directs attention to the fact that caroful and competent enginemen, aided by signal systems of the most ingily approved type, are not adequate fully to guard against the ocourrence of colijaions of this kind.

As all persons who could by any possibility explain why Engineman Curtie failed to obey the indicetion of the signals set agninst his train were killed in tho collision, it is idle to apeculate concerring the reasong winy the signal indications were not obeyoa; the plain, outatanding fact is the only thing thet can profitebly be considered. In the face of that fact there seeme to be no roon for doubt that to prevent accidents or this neture between high speed trains runntng on siort hencway, autometic devices with will enforce obedience to signal incications should be used.

I: Ite roport upon the accident wich occurred on this railroad at mestport, Conn., on Oetober 3, 1912, tine Commission satc:
"When a diversion from the lookout for a few seconds on the part of an enginecr, caused by perinaps sone imperative duty to be performed on the machinery in the incide of his cab, may cause disester to his train and ceatin to his pessengers, there should be no hesitation in actively taking up the perfection and installation of such cuppiementary appliences as will bring the train to a stop when danger threatenc. ****** Wreck prevention is the nighest duty of railronde. Their obligation is not settsifed by merely making rules wincin prove ineuficicient in operation. If the "humen element" repeatedly fails, then sofety requires that tie indenest degree of mechanical skill be applied to properly supolement the nuran element at the particular point of donger. * * * Rellroads ougnt to unitody experiment with the automatic tratn stop until a device of practicability for general use ginall be available."

Some effort ine aporently beon mode by the New York, New Haven \& Fartfore Reilroed Company to experiment with automatic train stop devices with a view of securing one that woula be precticable for use on thet railroad. Signal Engineer Morrison atated thet about 4,000 different plans of autometic train stop devices had been submitted to injm for exanination, of which number only two were found thet were thought worthy of test for the purpose of developaent. One of the devices tested proved an absolute fallure in a very short tine, and was removed the other has beon experimented with for about one year and is still being tested. Mr. Morrison stotcc thet it does not meet all tho requirements, but an effort is being nocie to develop some features of the device whicn promise to make it practleable for use.

While it is not so statea, it is probebie that these two devices are selected out of the 4,000 pions subritted for the reason that, owine to the system of operation on the electric division of the Now Heven Rallrcad, electrical devices of the direet current type cannot be used. The metiod of operation limits to a very consicerable degree the field from winich the New York, New Haven \& Hortford Reilroad Company is able to select autometic trein stop devices. It is probeble that many devices that were rejected by Mr. Morrison as being unsuited for use on his rond, are copoble of developnent for use with on electric propulsion system, but the plans presented dia not so indicate, and therefore they were rejected.

Tho Commission has examinet plans and specifications of proctically all the autonctic train stop devices that have
been offered for use witnin the past ten yenrs, and nas tested a considorable number of sucn devices under actual service concitions. Mry of the devices thus examined and tested have been considered useful, and quite capable of development to moct general railway operating concitions. If is believed. that wile the Naw York, New Haven \& Hartford Railroad Company is limited to a particular type of automatic train stop, no insuperable obstacles exigt to prevent the development of slternating current gevices tiat will prove suitable for use uncer the syotem of tran operation usec on tine electric division of that rona.

In the report of the investigation of a rear-end collision between tro pascencer trains made up of wooden equipment which ocourred on this rallroad at Nortin Heven, Conn., on Soptember 2 , 1913 , and in wich 21 passencers were killed and 33 were injured, attention was collec to tine superiority of all-steol equipment. In the eccicent under investigation, the equipment in the train winicn wes atruck was of all-steel and ateel unclerfrene construction; the lending oar of the second train wes also of all-steel construction, and it is witnout doubt due to the foct tinat the equipment involver was of steel construction thet loss of life in this cocicent res not much greeter.

Respectfully submitted,

Chief, Division
of Sarety.

